Invariant Submanifold of $\tilde{\psi}(7,1)$ Structure Manifold

Lakhan Singh, Shailendra Kumar Gautam Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.) Eshan College of Engineering, Mathura(UP)

Email; lakhansingh.077@gmail.com, skgautamrbs@yahoo.com

Abstract-In this paper, we have studied various properties of a $\tilde{\psi}(7,1)$ structure manifold and its invariant submanifold. Under two different assumptions, the nature of induced structure ψ , has also been discussed.

Keywords : Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions.

1. INTRODUCTION

Let V^m be a C^∞ m-dimensional Riemannian

manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^n , where m < n. The imbedding being denoted by

 $f: V^m \longrightarrow M^n$ Let B be the mapping induced by f i.e. B = df $df: T(V) \longrightarrow T(M)$

Let T(V,M) be the set of all vectors tangent to the submanifold f(V). It is well known that

$$B: T(V) \longrightarrow T(V,M)$$

Is an isomorphism. The set of all vectors normal to f(V) forms a vector bundle over f(V), which we shall denote by N(V,M). We call N(V,M) the normal bundle of V^m . The vector bundle induced by f from N(V,M) is denoted by N(V). We denote by $C:N(V) \longrightarrow N(V,M)$ the natural isomorphism and by $\eta_s^r(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with N (V). Thus $\zeta_0^0(V) = \eta_0^0(V)$ is the space of all C^{∞} functions defined on V^m while an element of $\eta_0^1(V)$ is a C^{∞} vector field normal to V^m and an element of $\zeta_0^1(V)$ is a C^{∞} vector field tangential to V^m .

Let \overline{X} and \overline{Y} be vector fields defined along f(V) and \tilde{X}, \tilde{Y} be the local extensions of \overline{X} and \overline{Y} respectively. Then $[\tilde{X}, \tilde{Y}]$ is a vector field tangential to M^n and its restriction $[\tilde{X}, \tilde{Y}]/f(V)$ to f(V) is determined independently of the choice of these local extension \tilde{X} and \tilde{Y} . Thus $[\overline{X}, \overline{Y}]$ is defined as

(1.1) $\left[\overline{X}, \overline{Y}\right] = \left[\tilde{X}, \tilde{Y}\right] / f(V)$ Since B is an isomorphism

(1.2)
$$[BX, BY] = B[X, Y]$$
 for all $X, Y \in \zeta_0^1(V)$

Let G be the Riemannain metric tensor of M^n , we define g and g^* on V^m and N(V) respectively as

(1.3)
$$g(X_1, X_2) = \tilde{G}(BX_1, BX_2) f$$
, and

$$\tilde{G}(CX_1, BX_2) = \tilde{G}(CX_1, BX_2) f$$

(1.4)
$$g(N_1, N_2) = G(CN_1, CN_2)$$

For all $X_1, X_2 \in \zeta_0^1(V)$ and $N_1, N_2 \in \eta_0^1(V)$

69

It can be verified that g and g^* are the induced metrics on V^m and N(V) respectively.

Let $ilde{
ell}$ be the Riemannian connection determined by $ilde{G}$ in M^n , then $ilde{
abla}$ induces a connection ∇ in f(V) defined by

(1.5)
$$\nabla_{\overline{X}}\overline{Y} = \widetilde{\nabla}_{\widetilde{X}}\widetilde{Y}/f(V)$$

where \overline{X} and \overline{Y} are arbitrary $\displaystyle C^{\infty}$ vector fields defined along f(V) and tangential to f(V). Let us suppose that M^n is a $C^{\infty} \tilde{\psi}$ (7,1) structure manifold with structure tensor $\tilde{\mathcal{V}}$ of type (1,1) satisfying

$$(1.6) \quad \tilde{\psi}^7 + \tilde{\psi} = 0$$

Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators

- (1.7) $\tilde{l} = -\tilde{\psi}^6$, $\tilde{m} = I + \tilde{\psi}^6$ where I denotes the identity operator. From (1.6) and (1.7), we have
- $\tilde{l} + \tilde{m} = I$ (b) $\tilde{l}^2 = \tilde{l}$ (1.8) **(a)**

(c)
$$\tilde{m}^2 = \tilde{m}$$

(d) $\tilde{l} \ \tilde{m} = \tilde{m} \ \tilde{l} = 0$

Let D_l and D_m be the subspaces inherited by complementary projection operators 1 and m respectively. We define

$$D_{l} = \left\{ X \in T_{p}\left(V\right) : lX = X, mX = 0 \right\}$$

$$D_{m} = \left\{ X \in T_{p}(V) : mX = X, lX = 0 \right\}$$

Thus $T_{p}(V) = D_{l} + D_{m}$

Also

Ker $l = \{X : lX = 0\} = D_m$ $Ker \ m = \{X : mX = 0\} = D_l \text{ at}$ each point p of f(V).

2. INVARIANT SUBMANIFOLD OF $\tilde{\psi}(7,1)$ STRUCTURE MANIFOLD

We call V^m to be invariant submanifold of M^{n} if the tangent space $T^{p}(f(V))$ of f(V) is invariant by the linear mapping $\tilde{\psi}$ at each point p of f(V). Thus

(2.1) $\tilde{\psi}BX = B\psi X$, for all $X \in \zeta_0^1(V)$, and

 ψ being a (1,1) tensor field in V^m .

Theorem (2.1): Let \tilde{N} and N be the Nijenhuis tensors determined by $\tilde{\mathcal{W}}$ and \mathcal{W} in M^n and

$$V^{m} \text{ respectively, then}$$
(2.2) $\tilde{N}(BX, BY) = BN(X,Y)$, for all $X, Y \in \zeta_{0}^{1}(V)$

Proof : We have, by using (1.2) and (2.1)(2.3)

$$\tilde{N} (BX, BY) = [\tilde{\psi}BX, \tilde{\psi}BY] + \tilde{\psi}^{2}[BX, BY] -\tilde{\psi}[\tilde{\psi}BX, BY] - \tilde{\psi}[BX, \tilde{\psi}BY] = [B\psi X, B\psi Y] + \tilde{\psi}^{2}B[X, Y] -\tilde{\psi}[B\psi X, BY] - \tilde{\psi}[BX, B\psi Y] = B[\psi X, \psi Y] + B\psi^{2}[X, Y] - \tilde{\psi}B[\psi X, Y -\tilde{\psi}B[X, \psi Y] = B\{[\psi X, \psi Y] + \psi^{2}[X, Y] - \psi[\psi X, Y] -\psi[X, \psi Y]\} = BN(X, Y)$$

3. DISTRIBUTION \tilde{M} NEVER BEING TANGENTIAL TO f(V)**Theorem (3.1)** if the distribution \tilde{M} is never

tangential to f(V), then $\sim (\mathbf{D}\mathbf{V})$

(3.1)
$$m(BX) = 0$$
 for all
 $X \in \zeta_0^1(V)$

and the induced structure ψ on V^m satisfies **Theoren (3.4)** Let \tilde{M} be never tangential to f(V). Define (3.2) $\psi^6 = -I$ (3.10)**Proof** : if possible $\tilde{m}(BX) \neq 0$. From (2.1) $\tilde{H}\left(\tilde{X},\tilde{Y}\right) = \tilde{N}\left(\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{m}\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{X},\tilde{m}\tilde{Y}\right)$ We get (3.3) $\tilde{\psi}^{6}BX = B\psi^{6}X$; from (1.7) and (3.3) $+ \tilde{N} \left(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y} \right)$ $\tilde{m}(BX) = (I + \tilde{\psi}^6) BX$ For all $\tilde{X}, \tilde{Y} \in \zeta_0^1(M)$, then $= BX + B\psi^6 X$ $(3.11) \ \tilde{H} \left(\tilde{X}, \tilde{Y} \right) = BN \left(X, Y \right)$ $(3.4) \quad \tilde{m}(BX) = B(X + \psi^6 X)$ **Proof**: Using $\tilde{X} = BX$, $\tilde{Y} = BY$ and (2.2), (3.1) in (3.10) We get (3.11). This relation shows that $\tilde{m}(BX)$ is tangential to f(V) which contradicts the 4. DISTRIBUTION \tilde{M} ALWAYS BEING hypothesis. Thus $\tilde{m}(BX) = 0$. Using this result TANGENTIAL TO f(V)in (3.4) and remembering that *B* is an **Theorem (4.1)** Let \tilde{M} be always tangential to isomorphism, We get (3.5) $\psi^6 = -I$, which gives that ψ^3 acts as an f(V), then almost complex structure on V^{m} . Thus V^{m} is even (4.1) (a) $\tilde{m}(BX) = Bm X$ (b) dimensional. $\tilde{l}(BX) = Bl X$ **Theorem (3.2)** Let \tilde{M} be never tangential to f(V), then **Proof :** from (3.4), We get (4.1) (a). Also (4.2) $l = -\psi^6$ $(3.6) \quad \tilde{N}(BX, BY) = 0$ $lX = -\psi^6 X$ **Proof** : We have (4.3) $BlX = -B\psi^6 X$ Using (2.1) in (4.3) (3.7) $\tilde{N}(BX, BY) = [\tilde{m}BX, \tilde{m}BY] + \tilde{m}^{2}[BX, BY] = \tilde{\psi}^{6}BX = \tilde{l}(BX), \text{ which is}$ (4.1) (b). $-\tilde{m}[\tilde{m}BX, BY] - \tilde{m}[BX, \tilde{m}BY]$ **Theorem (4.2)** Let \tilde{M} be always tangential to Using (1.2), (1.8) (c) and (3.1), we get (3.6). f(V), then *l* and *m* satisfy **Theorem (3.3)** Let \tilde{M} be never tangential to (4.5) (a) l + m = I (b) lm = ml = 0 (c) $l^2 = l$ (d) $m^2 = m$. f(V), then **Proof**: Using (1.8) and (4.1) We get the results. (3.8) $\tilde{N}(BX, BY) = 0$ **Theorem (4.3)** If M is always tangential to f(V), then **Proof :** We have (3.9)(4.6) $\psi^7 + \psi = 0$ $\tilde{N}(BX, BY) = \left[\tilde{l} BX, \tilde{l} BY\right] + \tilde{l}^{2} \left[BX, BY\right]$ **Proof :** From (2.1) (4.7) $\tilde{\psi}^7 BX = B \psi^7 X$ $-\tilde{l}\left[\tilde{l}\ BX, BY\right] - \tilde{l}\left[BX, \tilde{l}\ BY\right]$ Using (1.6) in (4.7) Using (1.2), (1.8) (a), (b) and (3.1) in (3.9); we get $-\tilde{\psi}BX = B\psi^7 X$ (3.8)

$$B\psi X = B\psi^7 X$$
 or

(

$$\psi^7 + \psi = 0$$
 which is (4.6)

Theorem (4.4) : If \tilde{M} Is always tangential to f(V) then as in (3.10)

$$(4.8) \quad H(BX,BY) = BH(X,Y)$$

Proof: from (3.10) we get

REFERENCES

- A Bejancu:On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
- [2] B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
- [3] F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
- [4] Endo Hiroshi: On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.

(4.9)

$$\tilde{H}(BX,BY) = \tilde{N}(BX,BY) - \tilde{N}(\tilde{m}BX,BY)$$

 $-\tilde{N}(BX,\tilde{m}BY) + \tilde{N}(\tilde{m}BX,\tilde{m}BY)$ Using (4.1) (a) and (2.2) in (4.9) we get (4.8).

- [5] H.B. Pandey & A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
- [6] K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying $f^3+f=0$. Tensor N.S., 14 (1963), 99-109.
- [7] R. Nivas & S. Yadav: On CR-structures and $F_{\lambda}(2\nu+3,2)$ HSU structure satisfying $F^{2\nu+3} + \lambda^r F^2 = 0$, Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).